
Synapse
Non-Intrusive Publish-Subscribe Library | Emil Dotchevski

Abstract
Synapse is a non-intrusive C++ publish–subscribe library for C++11. Features:

• Any C or C++ object of any type whatsoever can be used as a signal emitter.

• A system of meta signals for interoperability with other publish–subscribe, signal
programming libraries, and callback APIs. Lambda expressions / closures can be easily
installed as C API callbacks!

• In a multi-thread environment signals can be emitted asynchronously and scheduled for
synchronous execution when polled from other threads.

• No dependencies.

1

Tutorial

Signals, Emitters, Receivers
Signal programming libraries allow signals to be associated with emitter objects. Like function
types, each signal has a signature. Emitting a signal is similar to function invocation, except it may
call multiple functions that currently connect that particular signal from that particular emitter
object. Naturally, the signature of any connected function must match the signature of the signal.

In Synapse, signals are defined as function pointer typedefs. When a signal is emitted, the value
returned from any connected function is discarded, but the return type of the signal definition is
still important: it is used as an identifier of the signal, a way to tell apart different signals that have
otherwise identical signatures. For example, the following typedefs define two different signals,
even though they both take one int argument:

struct this_signal_;
typedef this_signal_(*this_signal)(int);

struct that_signal_;
typedef that_signal_(*that_signal)(int);

The two defined signals are different because they use different return types (this_signal_ vs.
that_signal_). By convention, the return types are defined implicitly within each typedef. This
makes the signal definitions more compact:

typedef struct this_signal_(*this_signal)(int);
typedef struct that_signal_(*that_signal)(int);

To emit a Synapse signal, we instantiate the emit function template with a pre-defined signal
typedef (e.g. this_signal), passing the emitter object as the first argument. The rest of the arguments
follow, as defined by the signal signature (in this case a single int argument). Note that the emitter
object passed as the first argument to emit<S> is not forwarded implicitly to the connected
functions; its only purpose is to specify the emitter, that is, which object is emitting the signal S.

As a less abstract example, let’s define a type button that emits a Synapse signal clicked (which
takes no arguments) when the member function click is called:

2

typedef struct clicked_(*clicked)();

class button {

 public:

 void click() {
 synapse::emit<clicked>(this);
 }
};

emit



It is possible to define the clicked typedef as a member of class button, but this
coupling is usually not appropriate when using Synapse. It is better to treat signals
as types with independent semantics that can be used with any appropriate object.
In this case, anything clickable could emit the clicked signal.

Next, let’s connect the signal clicked to the accept member function of a dialog box object:

class dialog {

 public:

 void accept();

};

....
shared_ptr<button> emitter=make_shared<button>();
shared_ptr<dialog> receiver=make_shared<dialog>();
synapse::connect<clicked>(emitter, receiver, &dialog::accept);

connect

Or we could use a lambda instead:

synapse::connect<clicked>(emitter, receiver,
 [](dialog * d) {
 d->accept();
 });

connect

With this setup, click()-ing the button will accept() the dialog.

3


The receiver argument to connect is optional. If it is specified, a pointer to the
receiver object is passed implicitly as the first argument to the connected function,
followed by all other arguments as specified by the signal signature.

Emitting Signals from Objects of 3rd-Party Types
The button/dialog example from the previous section could have been similarly implemented using
any signal programming library, because the button type is specifically designed to be able to emit
the clicked signal.

But in Synapse, any object whatsoever can be used as an emitter. This makes it possible to emit non-
intrusively even if the type of the emitter object was not designed to support signals. For example, a
function that processes a file can use a standard FILE pointer as a Synapse emitter to report on its
progress:

typedef struct report_progress_(*report_progress)(int progress);

void process_file(FILE * f) {

 for(int progress=0; !feof(f);) {

 progress += fread(buf,1,nread,f);

 synapse::emit<report_progress>(f,progress);
 }

}

emit

Outside of process_file the report_progress signal can be connected to some user interface function
that updates a progress bar. For example, using Synapse, we could easily connect it to a Qt
QProgressBar object:

if(FILE * f=fopen("file.dat","rb")) {
 QProgressBar pb(....);
 auto c=synapse::connect<report_progress>(f, &pb, &QProgressBar::setValue);
 process_file(f);
 fclose(f);
}

connect | connection

Notice that process_file is not coupled with QProgressBar: the report_progress signal could be
connected to a different function or not connected at all, in which case the call to emit in
process_file would be a no-op.

4

The observant reader has surely noticed that in the above example we had to capture the return
value of synapse::connect<report_progress> in the local variable c, while we didn’t have to do this in
the previous button/dialog example. This is explained below.

Managing Connection Lifetime
In Synapse there are two types of connection objects: connection and pconnection:

• shared_ptr<connection> objects are returned by overloads of connect which take the emitter
(and, if specified, the receiver) as a raw pointer. The user is required to keep the connection
object alive; the function passed to connect will be disconnected when that object expires.

• weak_ptr<pconnection> objects are returned by overloads of connect which take at least one of
the emitter or the receiver as a weak_ptr or shared_ptr. The user is not required to keep
pconnection objects alive; the connected function is disconnected when Synapse detects that the
emitter or the receiver have expired.


The release function can be used to convert a weak_ptr<pconnection> object to a
shared_ptr<connection> object, in case we need to disconnect the function before
the receiver or the emitter have expired.

Blocking of Signals
It is possible to temporarily block a specific signal for a specific emitter. This allows users to
dynamically disable functionality implemented by emitting signals — without having to disconnect
them.

 Blocking affects pre-existing as well as future connections.

5

Example

#include <boost/synapse/connect.hpp>
#include <boost/synapse/block.hpp>
#include <string>
#include <iostream>

namespace synapse = boost::synapse;

typedef struct print_(*print)(std::string const & s);

int main() {

 int emitter;

 auto c = synapse::connect<print>(&emitter,
 [](std::string const & s) {
 std::cout << s;
 });

 synapse::emit<print>(&emitter,"Hello World"); ①

 shared_ptr<synapse::blocker> b = synapse::block<print>(&emitter); ②
 synapse::emit<print>(&emitter,"no-op");

 b.reset();
 synapse::emit<print>(&emitter,"Hello World"); ③
}

emit | connect | connection | block | blocker

① emit calls the connected lambda, printing Hello World.

② The print signal will be blocked until b expires, therefore the call to emit on the next line is a no-
op, even though the signal is still connected.

③ At this point b has expired, so the call to emit will call the connected lambda, printing Hello
World, again.

Meta Signals
Synapse features a special global emitter that emits meta signals to notify connected functions
about user interactions with other signals. It can be accessed by the meta::emitter function.

When a signal S is blocked or unblocked, the meta emitter emits the meta::blocked<S> signal.
Connecting this meta::blocked<S> signal allows the blocked state of the signal S to be automatically
reflected in other systems, for example in user interface.

Similarly, when a signal S is connected or disconnected, the meta emitter emits the
meta::connected<S> signal, which is useful when integrating Synapse with 3rd-party callback
systems; see Synapsifying C Callbacks.

6


To further facilitate interoperability between Synapse and other callback APIs,
connection/pconnection objects (returned by overloads of connect) can store
arbitrary user data.

Interthread Communication

Emitting Signals Across Thread Boundaries

Synapse can be used to implement interthread communication using signals. The data structures
created by connect (or translate) use thread-local storage, so by default calling emit will call only
functions connected by the calling thread (and will not return until all such functions have been
called in order, or one of them throws.)

The following diagram shows the connections created (by calls to connect<S>) in a single thread for
a given signal type S, each connecting an emitter to a function. When emit<S>(e1,arg,…) is called,
all functions connecting the signal S from the given emitter e1 are called in the order in which the
connections were created:

It is also possible for any thread to request to receive all signals emitted by other threads, by
creating its own thread_local_queue object.

In this case, in addition to the behavior described above, emit<S>(e1,arg,…) will capture its
arguments (depending on the signature of S) and queue them into the thread_local_queue object
created by any thread other than the calling thread. Each such thread must poll its own
thread_local_queue regularly; this "emits" the queued objects locally and removes them from the
queue (note that poll is not given an emitter or a signal type, it emits locally all queued objects,
regardless of signal type or emitter).

This is illustrated by the following diagram:

7

A typical use case for this system is to update user interface objects with data generated by one or
multiple worker threads: the user interface objects themselves need not be thread-safe, because
they will be updated only synchronously, at the time poll is called.

Special care must be taken to ensure that any objects referred to by arguments passed to emit will
remain valid at least until all other threads have polled their thread_local_queue objects. For
example, the following code is incorrect in the presence of thread_local_queue objects:

typedef struct my_signal_(*my_signal)(int *);

void emit_my_signal(void * emitter, int x) {
 emit<my_signal>(emitter,&x); //Undefined behavior in the presence of
thread_local_queues!
}

emit

The problem is that the address of x may be queued into other threads' queues, and since x is local
to emit_my_signal, it may be destroyed by the time these threads call poll.

8

Scheduling Function Calls Across Thread Boundaries

The post function can be used to queue into a thread_local_queue arbitrary functions for execution
at the time poll is called. This feature allows critical worker threads to minimize the amount of
time they consume by offloading expensive non-critical computations to another, non-critical
thread. This also removes the need for synchronization, since the queued functions are executed
synchronously in the thread that owns the thread_local_queue object.

9

Synopsis

#include <boost/synapse/emit.hpp>

namespace boost { namespace synapse {

 template <class Signal, class... A>
 int emit(void const *, A...);

} }

emit

10

#include <boost/synapse/connect.hpp>

namespace boost { namespace synapse {

 class connection;

 template <class Signal, class Emitter, class F>
 shared_ptr<connection> connect(Emitter * e, F f);

 template <class Signal, class Emitter, class Receiver, class F>
 shared_ptr<connection> connect(Emitter * e, Receiver * r, F f);

 class pconnection;

 template <class Signal, class Emitter, class F>
 weak_ptr<pconnection> connect(<<Emitter>> e, F f); ①

 template <class Signal, class Emitter, class Receiver, class F>
 weak_ptr<pconnection> connect(<<Emitter>> e, <<Receiver>> r, F f); ②

 shared_ptr<connection const> release(weak_ptr<pconnection const> const & c);
 shared_ptr<connection> release(weak_ptr<pconnection> const & c);

 namespace meta {

 weak_ptr<void const> emitter();

 namespace connect_flags {

 unsigned const connecting=1;
 unsigned const first_for_this_emitter=2;
 unsigned const last_for_this_emitter=4;

 }

 template <class Signal>
 struct connected {
 typedef connected<Signal>(*type)(connection & c, unsigned
connect_flags cf);
 };
 }

} }

① Two overloads are provided: <<Emitter>> is weak_ptr<Emitter> const & or, equivalently,
shared_ptr<Emitter> const &;

② Multple overloads are provided: <<Emitter>> is Emitter *, weak_ptr<Emitter> const & or,
equivalently, shared_ptr<Emitter> const &; at least one of e and r is not a raw pointer.

11

connection | pconnection | connect | release | meta::emitter | meta::connected

#include <boost/synapse/translate.hpp>

namespace boost { namespace synapse {

 template <
 class OriginalSignal, class TranslatedSignal,
 class OriginalEmitter, class TranslatedEmitter>
 shared_ptr<connection> translate(OriginalEmitter * e1, TranslatedEmitter * e2
);

 template <
 class OriginalSignal, class TranslatedSignal,
 class OriginalEmitter, class TranslatedEmitter>
 weak_ptr<pconnection> translate(<<OriginalEmitter>> e1, <<TranslatedEmitter>>
e2); ①

} }

① Multiple overloads are provided: <<OriginalEmitter>> is either OriginalEmitter *,
weak_ptr<OriginalEmitter> const & or, equivalently, shared_ptr<OriginalEmitter> const &;
<<TranslatedEmitter>> by analogy. At least one of e1 and e2 is not a raw pointer.

translate

12

#include <boost/synapse/connection.hpp>

namespace boost { namespace synapse {

 class connection { //abstract base

 protected:

 connection();
 ~connection();

 public:

 template <class T>
 void set_user_data(T const &);

 template <class T>
 T * get_user_data() const;

 template <class T>
 shared_ptr<T> emitter() const;

 template <class T>
 shared_ptr<T> receiver() const;
 };

 class pconnection: protected connection { //abstract base

 protected:

 pconnection();
 ~pconnection();

 public:

 using connection::set_user_data;
 using connection::get_user_data;
 using connection::emitter;
 using connection::receiver;

 };

} }

connection | pconnection | set_user_data | get_user_data | emitter | receiver

13

#include <boost/synapse/block.hpp>

namespace boost { namespace synapse {

 class blocker;

 template <class Signal, class Emitter>
 shared_ptr<blocker> block(<<Emitter>> e); ①

 namespace meta {

 template <class Signal>
 struct blocked {
 typedef blocked<Signal>(*type)(blocker &, bool is_blocked);
 };

 }

} }

① Multiple overloads are provided: <<Emitter>> is Emitter *, weak_ptr<Emitter> const & or,
equivalently, shared_ptr<Emitter> const &.

blocker | block | meta::blocked

#include <boost/synapse/blocker.hpp>

namespace boost { namespace synapse {

 class blocker { //abstract base

 protected:

 blocker();
 ~blocker();

 public:

 template <class T>
 shared_ptr<T> emitter() const;
 };

} }

blocker | emitter

14

#include <boost/synapse/thread_local_queue.hpp>

namespace boost { namespace synapse {

 struct thread_local_queue;
 shared_ptr<thread_local_queue> create_thread_local_queue();

 int poll(thread_local_queue & q);
 int wait(thread_local_queue & q);
 void post(thread_local_queue & q, function<void()> const & f);

} }

thread_local_queue | create_thread_local_queue | poll | wait | post

15

Reference

emit
#include <boost/synapse/emit.hpp>

namespace boost { namespace synapse {

 template <class Signal, class... A>
 int emit(void const *, A...);

} }

Effects:

Calls all function objects that are connected to the specified Signal from the emitter e, in the
order in which they were connected by connect or translate, passing the specified arguments
depending on the Signal signature, subject to the connection lifetime/blocking restrictions.

Returns:

The count of the connected function objects that were called. Signals that are currently blocked
are not included in the count returned by emit.


It is the responsibility of the caller to ensure that the emitter object e does not
expire before emit returns, otherwise the behavior is undefined.

Throws:

Any exception thrown by one of the connected function objects, in which case the remaining
function objects are not called.

Notes:

• Values returned by the connected function objects are discarded.

• If before emit returns connect is called on the same signal and the same emitter, any newly
connected functions are not called during the same emit.

• If before emit returns a connection object expires, it may or may not get called during the
same emit.

• If e is 0, emit simply returns 0 without calling any functions. Because of this feature, if the
emitter is held by a shared_ptr object sp, there is no harm in calling emit<Signal>(sp.get(),…
) even if sp is empty. Similarly, if the caller holds a weak_ptr reference wp to an emitter object
which has expired, calling emit<Signal>(wp.lock().get(),…) will simply return 0.

• emit takes its arguments by value. Use std::ref to pass by reference (but beware of
thread_local_queue objects).

Thread safety:

By default emit will only call functions connected from the calling thread. In addition, the signal
is pushed onto any thread_local_queue objects created by other threads, but only if those threads

16

currently have at least one active connection for the specified Signal. In this case emit captures
its arguments similarly to std::bind, and it is the responsibility of the caller to ensure that they
remain valid until the posted signal is processed in all other threads, by a call to
thread_local_queue::poll or thread_local_queue::wait.

connect
#include <boost/synapse/connect.hpp>

namespace boost { namespace synapse {

 class connection;

 template <class Signal, class Emitter, class F>
 shared_ptr<connection> connect(Emitter * e, F f);

 template <class Signal, class Emitter, class Receiver, class F>
 shared_ptr<connection> connect(Emitter * e, Receiver * r, F f);

 class pconnection;

 template <class Signal, class Emitter, class F>
 weak_ptr<pconnection> connect(<<Emitter>> e, F f); ①

 template <class Signal, class Emitter, class Receiver, class F>
 weak_ptr<pconnection> connect(<<Emitter>> e, <<Receiver>> r, F f); ②

} }

① Two overloads are provided: <<Emitter>> is weak_ptr<Emitter> const & or, equivalently,
shared_ptr<Emitter> const &;

② Multiple overloads are provided: <<Emitter>> is Emitter *, weak_ptr<Emitter> const & or,
equivalently, shared_ptr<Emitter> const &; at least one of e and r is not a raw pointer.

Overloads of connect that return shared_ptr<connection> create connections whose lifetime is
explicitly managed by the user. Such connections require that the caller keeps the returned
connection object alive for as long as the connection should persist.

Overloads of connect that return weak_ptr<pconnection> take at least one of e and r as a weak_ptr or
shared_ptr. They create persistent connections which expire automatically when either e or r
expire.

Effects:

1. Connects the specified Signal from the emitter e to the function object f. The arguments of F
must match the arguments of Signal, except that if r is specified, a pointer to the receiver
object is passed as the first argument to F, followed by the rest of the arguments as specified
by the Signal signature. The signal is considered disconnected when either of the following
occurs:

17

◦ The returned shared_ptr<connection> object expires (this applies only to overloads that
return shared_ptr<connection>);

◦ e (passed as either weak_ptr<Emitter> or shared_ptr<Emitter>) expires;

◦ r (passed as either weak_ptr<Emitter> or shared_ptr<Emitter>) expires.


The returned object does not assume ownership of e or r: passing
shared_ptr to connect is equivalent to passing weak_ptr.


If either the emitter or the receiver, if passed as raw pointers, expire
before the returned connection object has expired, the behavior is
undefined.

2. The meta::emitter emits the meta::connected<Signal> signal:

namespace boost { namespace synapse {

 namespace meta {

 weak_ptr<void const> emitter();

 template <class Signal>
 struct connected {
 //unspecified
 };

 namespace connect_flags {
 unsigned const connecting=1;
 unsigned const first_for_this_emitter=2;
 unsigned const last_for_this_emitter=4;
 }

 }

} }

The meta::connected<Signal> signal is also emitted when the returned object expires.
Handlers of the meta signal take a reference to the connection object being created or
destroyed, and a second unsigned argument, flags, which indicates the circumstances under
which the meta signal is emitted:

◦ If the connection object is being created, the connecting bit is set, otherwise it is clear;

◦ If this is the first Signal connection being created for the emitter e, the
first_for_this_emitter bit is set, otherwise it is clear;

◦ If this is the last Signal connection being destroyed for the emitter e, the
last_for_this_emitter bit is set, otherwise it is clear.

18



▪ Because class connection is the protected base of class pconnection,
handlers of meta::connected<Signal> take connection & regardless of
which connect overload was used.

▪ The meta::connected<Signal> signal is thread-local; it will never be
queued into other threads' thread_local_queue objects.


The passed connection object can be used to access the emitter and
receiver objects passed to connect.

Thread safety:

Please see emit and thread_local_queue.

release
#include <boost/synapse/connect.hpp>

namespace boost { namespace synapse {

 class connection;
 class pconnection;

 shared_ptr<connection const> release(weak_ptr<pconnection const> const & c);
 shared_ptr<connection> release(weak_ptr<pconnection> const & c);

} }

Effects:

Converts a weak pconnection reference to shared ownership connection reference. The lifetime of
the connection is now explicitly managed by the returned shared_ptr object; see connect.

translate

19

#include <boost/synapse/translate.hpp>

namespace boost { namespace synapse {

 template <
 class OriginalSignal, class TranslatedSignal,
 class OriginalEmitter, class TranslatedEmitter>
 shared_ptr<connection> translate(OriginalEmitter * e1, TranslatedEmitter * e2);

 template <
 class OriginalSignal, class TranslatedSignal,
 class OriginalEmitter, class TranslatedEmitter>
 weak_ptr<pconnection> translate(<<OriginalEmitter>> e1, <<TranslatedEmitter>> e2
); ①

} }

① Multiple overloads are provided: <<OriginalEmitter>> is either OriginalEmitter *,
weak_ptr<OriginalEmitter> const & or, equivalently, shared_ptr<OriginalEmitter> const &;
<<TranslatedEmitter>> by analogy. At least one of e1 and e2 is not a raw pointer.

Effects:

The translate function template creates a connection which causes the emitter e2 to emit
TranslatedSignal each time the emitter e1 emits OriginalSignal (the two signals must have
compatible signatures). This behavior persists until:

• the returned connection object expires (this applies only to the translate overload that
takes e1 and e2 as raw pointers);

• e1 (passed as either weak_ptr or shared_ptr expires;

• e2 (passed as either weak_ptr or shared_ptr expires.


The returned connection object does not assume ownership of e1 or e2: passing
shared_ptr is equivalent to passing weak_ptr.


If either e1 or e2, passed as raw pointers, expire before the returned connection
object has expired, the behavior is undefined.

connection

pconnection

20

#include <boost/synapse/connection.hpp>

namespace boost { namespace synapse {

 class connection { //abstract base

 protected:

 connection();
 ~connection();

 public:

 template <class T>
 void set_user_data(T const &);

 template <class T>
 T * get_user_data() const;

 template <class T>
 shared_ptr<T> emitter() const;

 template <class T>
 shared_ptr<T> receiver() const;
 };

 class pconnection: protected connection { //abstract base

 protected:

 pconnection();
 ~pconnection();

 public:

 using connection::set_user_data;
 using connection::get_user_data;
 using connection::emitter;
 using connection::receiver;

 };

} }

set_user_data | get_user_data | emitter | receiver

Overloads of connect and translate return either shared_ptr<connection> or weak_ptr<pconnection>,
depending on whether or not the emitter and the receiver are passed as raw pointers. The former is
used to control the lifetime of the connection explicitly, while the latter represents persistent
connections, which expire implicitly with the expiration of the emitter or the receiver object.

21

Before being returned to the caller, connection objects are passed to handlers of the meta::connected
signal, which can use the emitter/receiver member function templates to access the
emitter/receiver object passed to connect. The set_user_data/get_user_data member function
templates can be used to store and access auxiliary information.


Use release to convert a non-owning weak_ptr<pconnection> reference to an
owning shared_ptr<connection> reference.

set_user_data

template <class T>
void set_user_data(T const & data);

Description:

Stores a copy of data into this. Use get_user_data to access it.

get_user_data

template <class T>
T * get_user_data() const;

Returns:

• If this contains object of type T previously copied by a call to set_user_data, returns a pointer
to that data.

• If set_user_data has not been called for this, or if the type used to instantiate the
set_user_data function template doesn’t match the type used with get_user_data, returns 0.

emitter

template <class T>
shared_ptr<T> emitter() const;

Returns:

A shared_ptr that points the emitter that was passed to an overload of the connect (or translate)
function template that returned the connection object.

Notes:

• An empty shared_ptr is returned if:

◦ T does not match the static type of the emitter passed to connect (or translate), or

22

◦ the emitter was passed to connect (or translate) as a shared_ptr/weak_ptr and it has
expired.

• If the emitter was passed to connect (or translate) as a raw pointer, the returned shared_ptr
points that emitter but does not (can not) keep it alive.

receiver

template <class T>
shared_ptr<T> receiver() const;

Returns:

A shared_ptr that points the receiver that was passed to an overload of the connect (or translate)
function template that returned the connection object.

Notes:

• An empty shared_ptr is returned if:

◦ No receiver object was passed to connect (or translate), or

◦ T does not match the static type of the receiver passed to connect (or translate), or

◦ the receiver was passed to connect (or translate) as a shared_ptr/weak_ptr and it has
expired.

• If the receiver was passed to connect (or translate) as a raw pointer, the returned shared_ptr
points that receiver but does not (can not) keep it alive.

block
#include <boost/synapse/block.hpp>

namespace boost { namespace synapse {

 class blocker;

 template <class Signal, class Emitter>
 shared_ptr<blocker> block(<<Emitter>> e); ①

} }

① Multiple overloads are provided: <<Emitter>> is either Emitter *, weak_ptr<Emitter> or,
equivalently, shared_ptr<Emitter>.

Effects:

1. Blocks the specified Signal from the emitter e until the returned blocker object expires.
While the Signal is blocked, calls to emit<Signal> for e are ignored and return 0. The
returned blocker object does not own e even if block was passed a shared_ptr.

23

2. The meta::emitter emits the meta::blocked<Signal> signal:

namespace boost { namespace synapse { namespace meta {

 template <class Signal>
 struct blocked {
 //unspecified
 };

} } }

The meta::blocked<Signal> signal is also emitted when the returned blocker object expires.
Handlers of the meta signal take a reference to the blocker object being created or
destroyed, and a second bool argument, is_blocked, which is true if the signal is becoming
blocked, false if it is becoming unblocked.


• Blocking affects existing as well as future connections.

• The meta::blocked<Signal> signal is thread-local; it will never be queued into
other threads' thread_local_queue objects.


If block is passed a raw pointer, deleting the emitter before the returned blocker
object has expired results in undefined behavior.

blocker
#include <boost/synapse/blocker.hpp>

namespace boost { namespace synapse {

 class blocker { //abstract base

 protected:

 blocker();
 ~blocker();

 public:

 template <class T>
 shared_ptr<T> emitter() const;
 };

} }

emitter

24

The block function returns shared_ptr<blocker> that is used to control the time the signal remains
blocked. As well, blocker objects are passed to handlers of the meta::blocked signal, which can use
the emitter member function template to access the emitter object passed to block.

emitter

template <class T>
shared_ptr<T> emitter() const;

Returns:

A shared_ptr that points the emitter that was passed to block.

Notes:

• An empty shared_ptr is returned if:

◦ T does not match the static type of the emitter passed to block, or

◦ the emitter was passed to block as a shared/weak_ptr and it has expired.

• If the emitter was passed to block as a raw pointer, the returned shared_ptr points that
emitter but does not (can not) keep it alive.

thread_local_queue

create_thread_local_queue

#include <boost/synapse/thread_local_queue.hpp>

namespace boost { namespace synapse {

 struct thread_local_queue;
 shared_ptr<thread_local_queue> create_thread_local_queue();

} }

Returns:

A thread-local object that can be used to queue signals emitted asynchronously from other
threads. Use poll to emit the queued signals synchronously into the calling thread. See
[Interthread communication].


While any number of threads can use this function to create their own
thread_local_queue, it is invalid to create more than one thread_local_queue object
per thread.

25

poll

#include <boost/synapse/thread_local_queue.hpp>

namespace boost { namespace synapse {

 int poll(thread_local_queue & q);

} }

Effects:

Synchronously emits all signals queued asynchronously into q by calls to emit from other
threads. See [Interthread communication].

Returns:

The total number of signals emitted.

wait

#include <boost/synapse/thread_local_queue.hpp>

namespace boost { namespace synapse {

 int wait(thread_local_queue & q);

} }

Effects:

The same as poll(q), except that it blocks and does not return until at least one signal was
delivered.

Returns:

The total number of signals emitted (always greater than 0).

post

#include <boost/synapse/thread_local_queue.hpp>

namespace boost { namespace synapse {

 void post(thread_local_queue & q, function<void()> const & f);

} }

26

Effects:

Queues f to be called next time q is polled; that is, f will be executed synchronously in the thread
that has created q.


While poll (or wait) must be called from the thread that created the
thread_local_queue object, post may be called from any thread.

27

Programming Techniques

Monitoring of Dynamic Systems
It is often needed to monitor the operations of a complex dynamic system beyond the facilities
available in its public API. One possible option to accomplish this is to use a logging library. Synapse
provides another.

Consider a dynamic object environment in a video game, where various art assets may be loaded
on the fly, cached, and eventually unloaded when they are no longer needed. Such events are
typically not accessible through a formal interface because they are implementation details; yet
there is still a need to analyze the efficiency of the caching algorithm.

Using Synapse, we can easily define a set of signal typedefs to represent such events:

typedef struct object_loaded_(*object_loaded)(char const * type, char const * name);
typedef struct object_unloaded_(*object_unloaded)(char const * type, char const *
name);
typedef struct cache_miss_(*cache_miss)(char const * type, char const * name);
typedef struct cache_hit_(*cache_hit)(char const * type, char const * name);

As part of the implementation of the object_cache class, we call emit to signal the corresponding
events as they occur:

void object_cache::load_object(char const * type, char const * name) {

 //load the object

 synapse::emit<object_loaded>(this,type,name);
}

emit

During development, users of the object_cache class may connect the Synapse signals in order to
analyze its efficiency, yet there is no need to compile calls to emit out of release builds; typically it is
sufficient to not connect the signals. Synapse is carefully designed to support this use case:
programs that do not call connect do not need to link with Synapse.

On the other hand, because Synapse connections are dynamic, it is possible to connect the signals
only when/if we need to monitor the object_cache operations. For example, they can be connected
only while a diagnostic information window is active.

Synapsifying C Callbacks
It is common for C APIs to use function pointers to implement callback systems. A typical example
is the SSL_set_info_callback function from OpenSSL:

28

https://www.openssl.org/docs/manmaster/man3/SSL_set_info_callback.html

void SSL_set_info_callback(SSL *ssl,
 void (*cb) (const SSL *ssl, int type, int val));

Once the user calls SSL_set_info_callback, the C function pointed to by cb will be called with state
information for ssl during connection setup and use.

One difficulty with such low level C APIs is that often the user needs to pass to the callback function
program-specific data. Sometimes such callback setters can be given an additional void * user_data
argument which they retain and pass verbatim when they invoke the callback function, together
with its other arguments. While this solution is rather cumbersome, it’s not even supported by
SSL_set_info_callback.

Synapse can be used with this, as well as any other C-style callback API, to install C++ function
objects — including lambda functions — as callbacks. This enables additional objects needed by the
callback to be captured as usual.

To do this for the SSL_set_info_callback function, we first define a Synapse signal with a matching
signature:

typedef struct SSL_info_callback_(*SSL_info_callback)(const SSL *ssl, int type, int
val);

Next, at global scope or during initialization, we install a handler for the
meta::connected<SSL_info_callback> signal, which the meta::emitter emits every time the user
connects or disconnects the SSL_info_callback signal we defined:

29

void emit_fwd(SSL const * ssl, int type, int val);

int main(int argc, char const * argv[]) {

 connect<meta::connected<SSL_info_callback> >(meta::emitter(),
 [](connection & c, unsigned flags) { ①

 if(flags & meta::connect_flags::connecting) { ②

 if(flags & meta::connect_flags::first_for_this_emitter) ③
 SSL_set_info_callback(c.emitter<SSL>().get(),&emit_fwd); ④

 } else { ⑤

 if(flags & meta::connect_flags::last_for_this_emitter) ⑥
 if(auto ssl = c.emitter<SSL>()) ⑦
 SSL_set_info_callback(ssl.get(),0); ⑧

 }

 });

}

void emit_fwd(SSL const * ssl, int type, int val) {
 emit<SSL_info_callback>(ssl,ssl,type,val);
}

connect | meta::connected | emit

① This lambda function is called every time the user connects or disconnects the SSL_info_callback
Synapse signal.

② The SSL_info_callback signal is being connected.

③ This is the first time the SSL_info_callback signal is being connected for a particular SSL object
(emitter).

④ Call connection::emitter to get the emitter as a shared_ptr<SSL> (we know the emitter is of type
SSL *), and then use the OpenSSL API to install a C callback emit_fwd, which uses
emit<SSL_info_callback> to call all connected Synapse functions.

⑤ The SSL_info_callback signal is being disconnected.

⑥ This is the last SSL_info_callback connection being destroyed for a particular SSL object
(emitter).

⑦ Check if the SSL object is still accessible (it may have been destroyed already).

⑧ Uninstall the emit_fwd callback.

Once the above handler for the meta::connected<SSL_info_callback> signal is installed, we can
simply use connect to install a C++ lambda handler for the SSL_info_callback signal we defined:

30

shared_ptr<SSL> ssl(SSL_new(ctx),&SSL_free);

connect<SSL_info_callback>(ssl,
 [](const SSL *ssl, int type, int val) noexcept {

 });

connect

Reporting Exceptions from noexcept Signal Handlers
Sometimes connected functions are not permitted to throw exceptions — this is usually the case
when the callback originates in C code. With Synapse, such exceptions can be reported safely to a
C++ context that can store them for later processing.

First, we define a Synapse signal we will use to report exceptions:

typedef struct exception_caught_(*exception_caught)();

If we take a handler of the SSL_info_callback (see above) as an example, we could modify it like
this:

shared_ptr<SSL> ssl(SSL_new(ctx),&SSL_free);

connect<SSL_info_callback>(ssl,
 [](const SSL *ssl, int type, int val) noexcept {
 try {

 //code which may throw

 } catch(...) {

 int n=synapse::emit<exception_caught>(ssl); ①
 assert(n>0); ②

 }
 });

connect | emit

① emit the exception_caught Synapse signal from the ssl object. Handlers of this signal must be
able to deal with any exception, for example they can use std::current_exception to capture the
exception and rethrow it once control has exited the critical noexcept path.

② emit returns the number of connected functions it called, so this assert ensures that the
exception won’t get ignored.

31

Using Synapse with Qt to Avoid MOCing
The signal programming API that is used in Qt is intrusive: signals must be specified in the
definition of each type. For this reason, it is not possible to add signals to existing Qt types. When
this is needed, users are directed to define the new signals in their own class which derives from
the Qt type they wanted to add signal(s) to.

There is a special example that illustrates this approach. Unfortunately, this requires the use of the
proprietary Qt Meta Object Compiler which the author finds cumbersome. Below is the same
example modified to use Synapse signals, which requires no MOCing (the changes made to the
original program are marked with numbers):

#include <boost/synapse/connect.hpp>
#define QT_NO_EMIT //Suppress the #define emit from Qt since it clashes with
synapse::emit.
#include <QtWidgets/QApplication>
#include <QtWidgets/QPushButton>

namespace synapse=boost::synapse;

class Window : public QWidget
{
public:
 explicit Window(QWidget *parent = 0);
 signals: //Not needed with Synapse but okay
 typedef struct counterReached_(*counterReached)(); ①
private slots: //<-- Not needed with Synapse but okay
 void slotButtonClicked(bool checked);
private:
 int m_counter;
 QPushButton *m_button;
 shared_ptr<synapse::connection> c_; ②
};

Window::Window(QWidget *parent) :
 QWidget(parent)
{
 // Set size of the window
 setFixedSize(100, 50);

 // Create and position the button
 m_button = new QPushButton("Hello World", this);
 m_button->setGeometry(10, 10, 80, 30);
 m_button->setCheckable(true);

 // Set the counter to 0
 m_counter = 0;

 connect(m_button,&QPushButton::clicked,
 [this](bool checked)

32

https://www.qt.io/
https://wiki.qt.io/Qt_for_Beginners#Creating_custom_signals_and_slots

 {
 slotButtonClicked(checked);
 }); ③

 c_=synapse::connect<counterReached>(this,&QApplication::quit); ④
}

void Window::slotButtonClicked(bool checked)
{
 if (checked)
 m_button->setText("Checked");
 else
 m_button->setText("Hello World");
 m_counter ++;
 if (m_counter == 10)
 synapse::emit<counterReached>(this); ⑤
}

int main(int argc, char **argv)
{
 QApplication app (argc, argv);

 Window window;
 window.show();

 return app.exec();
}

connection | connect | emit

① Was: void counterReached();

② Needed to keep the Synapse connection alive.

③ Was: connect(m_button, SIGNAL (clicked(bool)), this, SLOT (slotButtonClicked(bool)));

④ Was: connect(this, SIGNAL (counterReached()), QApplication::instance(), SLOT (quit()));

⑤ Was: emit counterReached();

33

Case Study: Synapsifying GLFW
Synapse integrates well with some C event handling APIs. As an example, let’s consider GLFW.


GLFW is an Open Source, multi-platform library for OpenGL, OpenGL ES and
Vulkan development on the desktop. It provides a simple API for creating
windows, contexts and surfaces, receiving input and events.

Here is the function provided by GLFW for installing a key event handler for a window:

GLFWkeyfun glfwSetKeyCallback(GLFWwindow *window, GLFWkeyfun cbfun);

where GLFWkeyfun is declared as:

typedef void (*GLFWkeyfun)(GLFWwindow * window, int key, int scancode, int action,
int mods);

With Synapse, we can define signals to represent this as well as all other GLFW input and window
state events:

34

http://www.glfw.org/
http://www.glfw.org/docs/latest/input_guide.html
http://www.glfw.org/docs/latest/window_guide.html#window_properties
http://www.glfw.org/docs/latest/window_guide.html#window_properties

glfw_signals.hpp:

extern "C" { typedef struct GLFWwindow GLFWwindow; }

namespace glfw_signals
{
 //User input callbacks
 typedef struct Key_(*Key)(GLFWwindow *, int key, int scancode, int action, int
mods);
 typedef struct Char_(*Char)(GLFWwindow *, unsigned int codepoint);
 typedef struct CharMods_(*CharMods)(GLFWwindow *, unsigned int codepoint, int
mods);
 typedef struct CursorPos_ (*CursorPos)(GLFWwindow *, double xpos, double ypos);
 typedef struct CursorEnter_(*CursorEnter)(GLFWwindow *, int entered);
 typedef struct MouseButton_(*MouseButton)(GLFWwindow *, int button, int action,
int mods);
 typedef struct Scroll_(*Scroll)(GLFWwindow *, double xoffset, double yoffset);
 typedef struct Drop_(*Drop)(GLFWwindow *, int count, char const * * paths);

 //Window state callbacks
 typedef struct WindowClose_(*WindowClose)(GLFWwindow *);
 typedef struct WindowSize_(*WindowSize)(GLFWwindow *, int width, int height);
 typedef struct FramebufferSize_(*FramebufferSize)(GLFWwindow *, int width, int
height);
 typedef struct WindowPos_(*WindowPos)(GLFWwindow *, int xpos, int ypos);
 typedef struct WindowIconify_(*WindowIconify)(GLFWwindow *, int iconified);
 typedef struct WindowFocus_(*WindowFocus)(GLFWwindow *, int focused);
 typedef struct WindowRefresh_(*WindowRefresh)(GLFWwindow *);

 //This is emitted from the GLFWwindow object to report exceptions from connected
signal handlers
 typedef struct exception_caught_(*exception_caught)(GLFWwindow *);
}

Next, in a different header we install meta::connected signal handlers for the signals above:

glfw_synapsify.hpp:

#include "glfw_signals.hpp"
#include <boost/synapse/connect.hpp>
#include <boost/synapse/connection.hpp>
#include "GLFW/glfw3.h"

template <class Signal>
class synapsifier;

template <class R, class... A>
class synapsifier<R(*)(GLFWwindow *,A...)>
{
 typedef R(*Signal)(GLFWwindow *,A...);

35

 typedef void (*GLFWfun)(GLFWwindow *,A...);

 static GLFWfun prev_;

 //This is the handler that GLFW calls. It emits the corresponding Synapse
 //signal and calls the previous GLFW handler for the same event, if any.
 static void handler(GLFWwindow * w, A... a)
 {
 using namespace boost::synapse;
 try
 {
 (void) emit<Signal>(w,w,a...);
 }
 catch(...)
 {
 //We can't let exceptions propagate up into C code, so the window
 //emits the exception_caught signal, which (if exceptions are
 //expected) should be connected to capture and handle the current
 //exception.
 bool handled = emit<glfw_signals::exception_caught>(w,w)>0;
 assert(handled);
 }
 if(prev_)
 prev_(w,a...);
 }

 public:

 explicit synapsifier(GLFWfun (*setter)(GLFWwindow *,GLFWfun))
 {
 using namespace boost::synapse;

 //Here we connect the Synapse meta::connected<Signal> signal. This
 //signal is emitted by the meta::emitter() when the Signal is being
 //connected (the user calls synapse::connect<Signal>) or disconnected
 //(when the connection expires). The emitter pointer passed to connect
 //(which in this case is of type GLFWwindow) is stored in the
 //synapse::connection object passed to the lambda below, and can be
 //accessed by the connection::emitter member function template.
 connect<meta::connected<Signal> >(meta::emitter(),
 [setter](connection & c, unsigned flags)
 {
 if(flags&meta::connect_flags::connecting)
 {
 //When the Signal is being connected for the first time,
 //use the GLFW API to install our handler.
 if(flags&meta::connect_flags::first_for_this_emitter)
 prev_=setter(c.emitter<GLFWwindow>().get(),&handler);
 }
 else
 {

36

 //When the last Signal connection expires, use the GLFW API
 //to uninstall our handler and restore the previous handler.
 if(flags&meta::connect_flags::last_for_this_emitter)
 {
 GLFWfun p=setter(c.emitter<GLFWwindow>().get(),prev_);
 assert(p==&handler);
 }
 }
 });
 }
};

template <class R, class... A>
typename synapsifier<R(*)(GLFWwindow *,A...)>::GLFWfun synapsifier<R(*)(GLFWwindow *,
A...)>::prev_;

//Install all the synapse::meta::connected<....> handlers
synapsifier<glfw_signals::WindowClose> s1(&glfwSetWindowCloseCallback);
synapsifier<glfw_signals::WindowSize> s2(&glfwSetWindowSizeCallback);
synapsifier<glfw_signals::FramebufferSize> s3(&glfwSetFramebufferSizeCallback);
synapsifier<glfw_signals::WindowPos> s4(&glfwSetWindowPosCallback);
synapsifier<glfw_signals::WindowIconify> s5(&glfwSetWindowIconifyCallback);
synapsifier<glfw_signals::WindowFocus> s6(&glfwSetWindowFocusCallback);
synapsifier<glfw_signals::WindowRefresh> s7(&glfwSetWindowRefreshCallback);
synapsifier<glfw_signals::Key> s8(&glfwSetKeyCallback);
synapsifier<glfw_signals::Char> s9(&glfwSetCharCallback);
synapsifier<glfw_signals::CharMods> s10(&glfwSetCharModsCallback);
synapsifier<glfw_signals::CursorPos> s11(&glfwSetCursorPosCallback);
synapsifier<glfw_signals::CursorEnter> s12(&glfwSetCursorEnterCallback);
synapsifier<glfw_signals::MouseButton> s13(&glfwSetMouseButtonCallback);
synapsifier<glfw_signals::Scroll> s14(&glfwSetScrollCallback);
synapsifier<glfw_signals::Drop> s15(&glfwSetDropCallback);

emit | connect | meta::connected


The above glfw_synapsify.hpp should be included in exactly one compilation unit
of a GLFW program, for example the main compilation unit. This will
automatically install all meta::connected signal handlers.

With this, we simply use connect to hook up any GLFWwindow event. For example, if we have a
GLFWwindow pointer w, we can install a key event handler like so:

auto c = synapse::connect<glfw_signals::key>(w,
 [](GLFWwindow * w, int key, int scancode, int action, int mods)
 {

 });

connect

37

Finally, this is the example from the GLFW Getting started page, modified to use the "synapsify"
framework above (changes to the original example are marked with numbers):

//==
// Simple GLFW example
// Copyright (c) Camilla Löwy <elmindreda@glfw.org>
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would
// be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such, and must not
// be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source
// distribution.
//
//==

#include "glfw_synapsify.hpp" ①
namespace synapse = boost::synapse;

#include <glad/glad.h>
#include <GLFW/glfw3.h>

#include "linmath.h"

#include <stdlib.h>
#include <stdio.h>

static const struct
{
 float x, y;
 float r, g, b;
} vertices[3] =
{
 { -0.6f, -0.4f, 1.f, 0.f, 0.f },
 { 0.6f, -0.4f, 0.f, 1.f, 0.f },
 { 0.f, 0.6f, 0.f, 0.f, 1.f }
};

38

http://www.glfw.org/docs/latest/quick.html

static const char* vertex_shader_text =
"#version 110\n"
"uniform mat4 MVP;\n"
"attribute vec3 vCol;\n"
"attribute vec2 vPos;\n"
"varying vec3 color;\n"
"void main()\n"
"{\n"
" gl_Position = MVP * vec4(vPos, 0.0, 1.0);\n"
" color = vCol;\n"
"}\n";

static const char* fragment_shader_text =
"#version 110\n"
"varying vec3 color;\n"
"void main()\n"
"{\n"
" gl_FragColor = vec4(color, 1.0);\n"
"}\n";

static void error_callback(int error, const char* description)
{
 fprintf(stderr, "Error: %s\n", description);
}

/* ②
static void key_callback(GLFWwindow* window, int key, int scancode, int action, int
mods)
{
 if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
 glfwSetWindowShouldClose(window, GLFW_TRUE);
}
*/

int main(void)
{
 GLFWwindow* window;
 GLuint vertex_buffer, vertex_shader, fragment_shader, program;
 GLint mvp_location, vpos_location, vcol_location;

 glfwSetErrorCallback(error_callback);

 if (!glfwInit())
 exit(EXIT_FAILURE);

 glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 2);
 glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 0);

 window = glfwCreateWindow(640, 480, "Simple example", NULL, NULL);
 if (!window)
 {

39

 glfwTerminate();
 exit(EXIT_FAILURE);
 }

 //glfwSetKeyCallback(window, key_callback); ②

 auto connected = synapse::connect<glfw_signals::Key>(window, ③
 [](GLFWwindow * window, int key, int /*scancode*/, int action, int /*mods*/
)
 {
 if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
 glfwSetWindowShouldClose(window, GLFW_TRUE);
 });

 glfwMakeContextCurrent(window);
 gladLoadGLLoader((GLADloadproc) glfwGetProcAddress);
 glfwSwapInterval(1);

 // NOTE: OpenGL error checks have been omitted for brevity

 glGenBuffers(1, &vertex_buffer);
 glBindBuffer(GL_ARRAY_BUFFER, vertex_buffer);
 glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

 vertex_shader = glCreateShader(GL_VERTEX_SHADER);
 glShaderSource(vertex_shader, 1, &vertex_shader_text, NULL);
 glCompileShader(vertex_shader);

 fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);
 glShaderSource(fragment_shader, 1, &fragment_shader_text, NULL);
 glCompileShader(fragment_shader);

 program = glCreateProgram();
 glAttachShader(program, vertex_shader);
 glAttachShader(program, fragment_shader);
 glLinkProgram(program);

 mvp_location = glGetUniformLocation(program, "MVP");
 vpos_location = glGetAttribLocation(program, "vPos");
 vcol_location = glGetAttribLocation(program, "vCol");

 glEnableVertexAttribArray(vpos_location);
 glVertexAttribPointer(vpos_location, 2, GL_FLOAT, GL_FALSE,
 sizeof(vertices[0]), (void*) 0);
 glEnableVertexAttribArray(vcol_location);
 glVertexAttribPointer(vcol_location, 3, GL_FLOAT, GL_FALSE,
 sizeof(vertices[0]), (void*) (sizeof(float) * 2));

 while (!glfwWindowShouldClose(window))
 {
 float ratio;

40

 int width, height;
 mat4x4 m, p, mvp;

 glfwGetFramebufferSize(window, &width, &height);
 ratio = width / (float) height;

 glViewport(0, 0, width, height);
 glClear(GL_COLOR_BUFFER_BIT);

 mat4x4_identity(m);
 mat4x4_rotate_Z(m, m, (float) glfwGetTime());
 mat4x4_ortho(p, -ratio, ratio, -1.f, 1.f, 1.f, -1.f);
 mat4x4_mul(mvp, p, m);

 glUseProgram(program);
 glUniformMatrix4fv(mvp_location, 1, GL_FALSE, (const GLfloat*) mvp);
 glDrawArrays(GL_TRIANGLES, 0, 3);

 glfwSwapBuffers(window);
 glfwPollEvents();
 }

 glfwDestroyWindow(window);

 glfwTerminate();
 exit(EXIT_SUCCESS);
}

connect | connection

① Automatically install meta::connected signal handlers to synapsify GLFW.

② Commented-out parts of the original example, and…

③ …the C++ lambda function connected to the Key Synapse signal from glfw_signals.hpp to handle
the Esc key.

41

Alternatives to Synapse
The unique design feature of Synapse is that it is non-intrusive with respect to the emitter object
type. While other libraries provide users with types that can emit signals, Synapse is able to emit
any signal from any object of any type whatsoever.

For a list of signal programming libraries, see this Wikipedia page.

Comparison to Boost Signals2
Because Synapse is formatted for Boost review, people often ask what are the differences between
Synapse and Boost Signals2.

Table 1. Comparison between Signals2 and Synapse

Signals2 Synapse

What is a signal? An object of type signal<T>,
which maintains a list of
connected functions, and is
callable like std::function<T> is.

A type, a C function pointer
typedef.

How does emitting a signal
work?

Invoking s(…), where s is of
type signal<T>, calls all
connected functions.

Invoking emit<S>(e,…) calls all
functions connecting the signal
S for the object e.

What objects can emit signals? Only instances of the signal<T>
class template.

Any object of any type
whatsoever: the emit<S>(e)
function template takes e as a
void pointer.

How does connecting a signal
work?

Calling s.connect(f), where s is
of type signal<T>, connects the
function f.

Calling connect<S>(e,f)
connects the signal S from the
emitter object e to the function
f.

Support for meta signals? No (not possible, a signal is an
object).

Yes. Connecting a signal of type
S emits the signal
meta::connected<S> from the
meta::emitter.

Integration with C-style callback
APIs?

No (not possible). Yes, through meta signals, see
Synapsifying C Callbacks.

Multi-threading support? Yes, the connection list
maintained in each signal
object is thread-safe.

Yes, the connection lists are
thread-local, and signals are
transported to other threads
using thread_local_queue
objects.

42

https://en.wikipedia.org/wiki/Signals_and_slots#Alternative_implementations
https://www.boost.org/doc/libs/release/doc/html/signals2.html

Signals2 Synapse

Can connected functions return
values?

Yes, there is an elaborate
system for dealing with
multiple returns when a signal
is invoked.

No, but of course it’s possible to
pass an argument by reference
or a custom object to collect
and/or accumulate the results if
needed.

43

Macros and Configuration

BOOST_SYNAPSE_ASSERT
All assertions in Synapse use this macro. If it is not defined, Synapse header files #define it either as
BOOST_ASSERT or assert, depending on whether BOOST_SYNAPSE_USE_BOOST is defined.

44

Distribution
Synapse is distributed under the Boost Software License, Version 1.0.

The source code is available on GitHub.

 Synapse is not part of Boost.

45

http://www.boost.org/LICENSE_1_0.txt
https://github.com/zajo/synapse

Support
The following support options are available:

• cpplang on Slack (use the #boost channel)

• Boost Users Mailing List

• Boost Developers Mailing List

46

https://Cpplang.slack.com
https://lists.boost.org/mailman/listinfo.cgi/boost-users
https://lists.boost.org/mailman/listinfo.cgi/boost

Portability
Synapse requires a C++ compiler that supports at least C++11.

47

Building
There are two build scripts provided, one for Meson Build, the other for Boost Build.

To build the source code:

• Using Meson Build, from the Synapse root directory, execute e.g.:

meson bld/debug
cd bld/debug
ninja

• Using Boost Build, make sure Synapse is cloned under the <boost-root>/libs directory. From the
Synapse root directory, execute:

../../b2 build

To run the unit tests:

• Using Meson Build, from the Synapse root directory, execute e.g.:

meson bld/debug
cd bld/debug
meson test

• Using Boost Build, make sure Synapse is cloned under the <boost-root>/libs directory. From the
Synapse root directory, execute:

../../b2 build/test



boost/synapse/emit.hpp is a header-only component: if a program only emits
signals, but does not connect signals, it needs not link with Synapse. This enables
libraries to emit signals without forcing a link dependency on Synapse on
programs that do not use it.

48

https://mesonbuild.com/

Q&A
1. Is there a way to stop the emit loop before all connected functions have been called?

No, except by throwing an exception.

2. I am concerned about code size, does Synapse use a lot of templates?

Yes, there are templates instantiated for each signal type. This is done so that the dispatch by
signal type occurs at compile-time, leaving only emitter dispatch at run-time. However, static
types are erased as soon as possible, so template bloat is kept to a minimum.

49

Acknowledgements
Special thanks to Peter Dimov for his valuable feedback on the Synapse design and for coming up
with the perfect name for this library.

© 2015-2021 Emil Dotchevski

Documentation rendered by Asciidoctor with these customizations.

50

https://asciidoctor.org/
https://github.com/zajo/asciidoctor_skin

	Synapse
	Abstract
	Tutorial
	Signals, Emitters, Receivers
	Emitting Signals from Objects of 3rd-Party Types
	Managing Connection Lifetime
	Blocking of Signals
	Meta Signals
	Interthread Communication

	Synopsis
	Reference
	emit
	connect
	release
	translate
	connection
	pconnection
	block
	blocker
	thread_local_queue

	Programming Techniques
	Monitoring of Dynamic Systems
	Synapsifying C Callbacks
	Reporting Exceptions from noexcept Signal Handlers
	Using Synapse with Qt to Avoid MOCing

	Case Study: Synapsifying GLFW
	Alternatives to Synapse
	Comparison to Boost Signals2

	Macros and Configuration
	BOOST_SYNAPSE_ASSERT

	Distribution
	Support
	Portability
	Building
	Q&A
	Acknowledgements

